
1 Introduction

The range equation for projectile motion is relatively easy to solve if you assume that the
initial vertical position of the projectile equals the final vertical position i.e. the vertical
displacement after the projectile has landed is zero. When I saw the derivation (1: p.49-50)
for the first time in class, I thought the assumption was rather restrictive which is why I
wanted to investigate projectile motion where the final vertical position doesn’t equal the
initial vertical position. I chose to investigate this setting with the research question:

How does the range of a projectile on an incline line depend on the angle of
incline?

2 Theoretical background

2.1 Angles, forces and motion equations

The variables are represented in Figure 1. The range is defined as the distance travelled on
the incline line after the projectile has landed. The angle of incline is defined as the angle
between the incline line and the horizontal line.
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Figure 1: Incline angle α, range xα and projectile trajectory in dashed line.

To solve for the range along the incline line, new axes are defined based on the angle α. θ,
the launch angle, is the angle between the initial velocity vector and horizontal. Therefore
the new launch angle is θ−α. Figure 2 illustrates the coordinate system, all relevant angles
and the initial velocity and its components.
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Figure 2: Angles and initial velocity.
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Figure 3 shows the forces acting on the projectile while its traveling in the air. The only
force acting on the projectile is its weight assuming that all other forces are negligible. In
this context, the assumption is that air resistance is negligible (evaluated in Section 6).
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Figure 3: Weight and its components.

To solve for range in projectile motion, the motion is examined in two dimensions separately
(1: p.46). The accelerations, based on Figure 3, in the xα-direction and yα-direction are:

X
Fxα = maxα = Wxα

X
Fyα = mayα = Wyα

= W sin (α) = W cos (α)

= −mg sin (α) = −mg cos (α)

=⇒ axα = −g sin (α) =⇒ ayα = −g cos (α)

From Figure 2 the components of the initial velocity are:

uxα = u cos (θ − α) uyα = u sin (θ − α)

The initial position of the projectile is (0,0). Since the acceleration is constant when looking
at the direction separately, the Uniformly Accelerated Motion equations (3) can be used.

s = ut+
1

2
at2

Plugging in the accelerations and initial velocities gives the position equations in the xα-
and yα-direction:

xα = u cos (θ − α)× t− 1

2
g sin (α)× t2

yα = u sin (θ − α)× t− 1

2
g cos (α)× t2
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2.2 Deriving the range equation

Solving for the range in the xα-direction is the same method Tsokos uses to solve for the
range in normal projectile motion on horizontal ground (1: p.49-50). The final time is solved
from the yα-equation since when the projectile has landed, its yα-position is zero. Then this
final time is substituted into the xα-equation. The math is a bit more complicated compared
to projectile motion on flat ground as the xα-equation is a quadratic equation of time and
not a linear equation.

yα = u sin (θ − α)× t− 1

2
g cos (α)× t2 = 0

t×
�
u sin (θ − α)− 1

2
g cos (α)× t

�
= 0

tinitial = 0

t�nal =
2u sin (θ − α)

g cos (α)

Substituting t�nal into the xα-equation

xα = u cos (θ − α)× 2u sin (θ − α)

g cos (α)
− 1

2
g sin (α)×

�
2u sin (θ − α)

g cos (α)

�2

=
2u2 cos (θ − α) sin (θ − α)

g cos (α)
− 2u2 sin (α) sin2 (θ − α)

g cos2 (α)

=
2u2 sin (θ − α)

g cos2 (α)
× [cos (α) cos (θ − α)− sin (α) sin (θ − α)]

Substituting in the cosine rule cosA cosB − sinA sinB = cos (A+B)

xα =
2u2 sin (θ − α)

g cos2 (α)
× cos (α + (θ − α))

=
2u2 sin (θ − α)

g cos2 (α)
× cos (θ)

The range of the projectile is

xα =
2u2 cos (θ) sin (θ − α)

g cos2 (α)

When α = 0�, sin (θ − α) = sin (θ) and cos2 (α) = 1. The equation reverts back to the
normal projectile range equation on horizontal ground.

x =
2u2 cos (θ) sin (θ)

g × 1
=
u2 sin (2θ)

g

It can be shown that the range equation also applies to decline angles, in which case the
angle α would be negative. But to keep the theory and research question concise, I only
considered the incline angle.
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3 Setting

3.1 Variables

Independent variable
The independent variable is the incline angle. It was measured with an angle meter app on
my phone by placing the phone on the incline plank. The angle meter had an instrumental
uncertainty of ±1�.

The Vernier Projectile Launcher gives ”repeatability at angles between 0 and 70” (2: p.3).
I chose launch angle of 65� to be safe which restricts the incline angle to be less than the
launch angle. This gives a range of values of [0,65].

The experiment was repeated every 5 degrees so there were 14 incline angle measures in total.

Dependent variable
The dependent variable is the range. A measuring tape was put on the incline plank and a
phone was set up on a tripod to slow-motion record the projectile falling on the plank. The
range was recorded later from the videos (Data processing showed more in Section 4).

The Vernier Projectile Launcher gives repeatability ”up to a distance of 2.5 m” (2: p.3). The
Launcher was set up so that the range would not go over this limit but also be over 2 meters
at α = 0� so that the fractional uncertainties in the range would be as small as possible.

The experiment was repeated 8 times for every incline angle to reduce effects from random
uncertainties. This means there were total of 112 data points.

Controlled variables
Mass of projectile
The same metal ball with mass m = 21 g was used every time.

Initial velocity
The initial velocity of the projectile depends on the pressure built up in the chamber. The
Launcher allows to set a constant pressure. When the pressure from the hand pump goes
over this limit, a valve releases the extra pressure. This is how the pressure was controlled
around 100 kPa and thus the initial velocity was controlled.

Launch angle
The launch angle was set at 65� to ensure reliable results with the Launcher. This limited
the range of the incline angle values but reliable results were priority.

Wind speed
The experiment was performed indoors so that there would be no effect from wind. Effect
of air resistance is evaluated separately in Section 6.
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3.2 Setting

List of apparatus
• Vernier Projectile Launcher

• Metal ball

• Hand pump

• Measuring tape

• Plank

• Tripod

• Phone

• Safety goggles

Figure 4: Projectile
Launcher and a hand
pump.

Figure 5: Full experimental setting.

In Figure 5, the start of the plank is not on the ground because the Launcher Manual says
that the launch point is ”0.146 m above the base and 0.082 m from the side” (2: p.2) so I
tried to get the plank as close to the actual initial position of the metal ball as possible (this
is evaluated closer in Section 6).

Method

1. Set up the pressure limit and launch angle of the Launcher

2. Put the ball inside the chamber

3. Start recording the slow-motion video

4. Pump pressure into the chamber until the limit is reached

5. Shoot the projectile (care was taken to ensure that I was never in front of the Launcher
when it was pressurized)

6. Stop the slow-motion recording

7. Repeats steps 2 to 6 seven more times for that incline angle
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8. Increase incline angle by 5 degrees

9. Repeat steps 2 to 8 thirteen more times

4 Data

The measuring tape used in the experiment
had millimiter markings, however, with many
of the slow-motion videos it was impossible
to record the ball’s range with that level of
precision. Therefore the range of the ball was
taken between centimeter markings illustrated
in Figure 6.

The mean range was calculated for each incline
angle and the standard deviation was used to
get the absolute uncertainty in the mean. Figure 6: The middle of the ball

is between 2.04 m and 2.05 m. This
gives the value: 2.045 m± 0.005 m.

Incline angle Range xα/m± 0.005 m

α/� ± 1� xα,1 xα,2 xα,3 xα,4 xα,5 xα,6 xα,7 xα,8

0 2.105 2.135 2.125 2.135 2.125 2.115 2.105 2.115

5 2.045 2.025 2.055 2.045 2.065 2.055 2.055 2.045

10 2.005 1.995 1.985 1.985 2.005 2.005 1.985 1.995

15 1.945 1.945 1.955 1.945 1.955 1.955 1.955 1.945

20 1.915 1.925 1.915 1.915 1.935 1.915 1.925 1.905

25 1.875 1.875 1.885 1.885 1.885 1.895 1.875 1.885

30 1.805 1.825 1.815 1.805 1.825 1.815 1.815 1.825

35 1.785 1.805 1.805 1.805 1.805 1.795 1.795 1.775

40 1.775 1.755 1.765 1.765 1.765 1.755 1.775 1.775

45 1.705 1.705 1.715 1.705 1.715 1.705 1.695 1.695

50 1.615 1.605 1.615 1.605 1.605 1.615 1.605 1.625

55 1.445 1.465 1.455 1.455 1.455 1.445 1.445 1.425

60 1.165 1.165 1.175 1.175 1.175 1.175 1.165 1.175

65 0.775 0.765 0.785 0.775 0.775 0.775 0.785 0.765

Table 1: Raw data.
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xα =

8P
n=1

(xα,n)

8
∆xα =

vuut 1

8− 1
×

8X
n=1

(xα,n − xα)2

(Standard deviation formula)

Incline angle Mean range
Uncertainty in
mean range

α/� ± 1� xα/m ∆xα/m

0 2.12 0.01

5 2.05 0.01

10 1.995 0.009

15 1.950 0.005

20 1.919 0.009

25 1.882 0.007

30 1.816 0.008

35 1.80 0.01

40 1.766 0.008

45 1.705 0.008

50 1.611 0.007

55 1.45 0.01

60 1.171 0.005

65 0.775 0.008

Table 2: Final data set. Absolute uncertainties rounded to one significant figure and mean
ranges rounded to the same decimal place as corresponding uncertainty.

Linearizing the data could show systematic uncertainties better in the xα-axis. However, the
relationship can’t be linearized which means that the data has to be used as is.

The only unknown variable in the range equation is the initial velocity u. The Projectile
Launcher allows to measure the initial velocity by measuring the time it takes for the projec-
tile to travel a very short distance in the chamber (2: p.3). The initial velocity was measured
five times:
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u =
(5.284 + 5.321 + 5.328 + 5.309 + 5.317) m s�1

5
= 5.3118 m s�1

Therefore, based on the theoretical background in Section 3, the data points should fall on
the line:

xα =
2× (5.3118 m s�1)

2 × cos (65�)× sin (65� − α)

9.81 m s�2 × cos2 (α)
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Mean range along the incline line over incline angle

xα = 2×(5.3118 m s�1)2×cos (65�)×sin (65�−α)
9.81 m s�2×cos2 (α)

5 Analysis

5.1 Random uncertainties

The absolute uncertainties in Table 2 are small compared to the range values. The percentage
uncertainty can be calculated with:

∆xα
xα
× 100
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Incline angle α 0 5 10 15 20 25 30 35 40 45 50 55 60 65

Mean range %-unc. 0.5 0.5 0.5 0.3 0.5 0.4 0.4 0.6 0.5 0.5 0.4 0.7 0.4 1

Table 3: Percentage uncertainty of mean range values.

Table 3 shows that the percentage uncertainties are less than one. This means that the
experimental setting was precise and random uncertainties didn’t have a big effect on the
results.

5.2 Conclusion

The data points follow some of the same characteristics as the model-line. The range in
the data points is constantly decreasing as the incline angle increases. The rate of range
decrease is largest at the extreme incline angle values α = 0� and α = 65� and the range in
the data points seems to approach zero between α = 65� and α = 70� just like the model does.

However, the data points do deviate from the model significantly at times. In fact most of
the points (11/14) don’t touch the line with the error bars. The points less than 35� are
lower than the model and the deviation seems to increase as the angle approaches 0�. The
data points more than 35� are higher than the model and the deviation seems to increase as
the angle approaches 65�. The percentage difference between the data points and the model
can be calculated with: ����xα,experimental − xα,theoretical

xα,theoretical

����× 100 (1)

Incline angle α 0 5 10 15 20 25 30 35 40 45 50 55 60 65

Mean range %-diff. 4 4 3 3 2 1 3 1 0.6 2 6 10 40 *

Table 4: Percentage difference to the theoretical model.

From Table 4 it’s clear that the difference gets exceptionally large when the incline angle
gets closer to the launch angle. There isn’t value for α = 65� because the theoretical range
is 0 m so there would be division by zero in Equation 1. The model makes physical sense
since if the incline angle equals, or is more then the launch angle, the projectile obviously
shouldn’t go anywhere. But in the experiment the range at this angle was xα = 0.775 m.

Despite the similar characteristics of the data points and the model-line the deviation is
large at times and since this deviation is not constant it warrants a closer look. The reason
for it and the trend it creates is explained next.
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6 Evaluation

6.1 Initial position

6.1.1 Small angles

Most of the deviation from the model can be explained with the initial position of the
projectile. As said in Section 3, the projectile is ”0.416 m above the base and 0.082 m from
the side” and I tried to compensate for this by raising the plank off the ground (Figure 5).
However the horizontal difference meant that, with small incline angles, the measured ranges
were smaller than what they were in reality. Figure 7 shows how the initial position affected
the range measurement.

xα,theoretical

xα,measured

Figure 7: The measured range is smaller compared to if the initial position was right at the
start of the plank.

The difference between the measured range and the model range at α = 0� is:

2× (5.3188 m s�1)
2 × cos (65�)× sin (65� − 0�)

(9.81 m s�2)× cos2 (0�)
− 2.12 m ≈ 0.089 m

This value is very close to the actual distance the projectile was left of the edge of the
Launcher (0.082 m). This implies that the initial position accounts for vast majority of the
deviation from the model.

6.1.2 Large angles

Already during the experiment it became clear that the initial position would have a large
effect when the incline angle approached the launch angle. The effect reverses from small
angles and the measured range values are larger than they are supposed to be. Figure 8
shows how the initial position affects the range with a large incline angle. Figure 9 shows
how the setting in real life looked when the incline angle was α = 65�: the projectile travels
almost parallel to the plank until finally hitting it.

6.2 Other factors

The derivation of the range equation in Section 2 assumes that air resistance is negligible
so that the motion equations would be simpler. However, air resistance has a real effect in
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